Carbon Neutral Olives?

Richard Eckard

Primary Industries Climate Challenges Centre

International Policy Drivers: COP21 Paris Agreement

THE UNIVERSITY OF MELBOURNE

- Reach global peaking GHG emissions as soon as possible
 - Balance between emissions and removals by 2050
- COP26 Glasgow
 - Increased 2030 ambition

International Policy Drivers: Nationally Determined Contributions (NDC)

Country	Target
Australia	43% by 2030 and net zero by 2050
Canada	40-45%% below 2005 by 2030 and net-zero by 2050
China	Peak in emissions by 2030 and achieve "carbon neutrality" before 2060
European Union	55% in greenhouse gas emissions by 2030 compared to 1990.
India	A 45% in EI by 2030 compared to 2005
Mexico	35% below business-as-usual by 2030
Norway	At least 55% below 1990 by 2030
Switzerland	50% below 1990 by 2030 and net-zero emissions by 2050
Russia	70% below 1990 by 2030 (but assuming forest absorption)
United Kingdom	68% by 2030 compared to 1990 levels.
United States	50 to 52% by 2030 over 2005 and 83 per cent by 2050.

What are our value chain GHG targets?

- Unilever, Nestle, Danone, Mars
 - 50% by 2030 & net zero by 2050
- Fonterra
 - 30% EI by 2030 (from a 2018 baseline)
- Mondelez
 - Net zero by 2050 and SBTI by 2030
- Heineken
 - Net zero by 2030
 - Carbon neutral barley-malt
- Rabobank & NAB/BNZ, ANZ
 - 20-50% by 2030
 - Net zero financed emissions by 2050
 - Hold 50% of Australia agri-debt market

BUT these targets are your farm!

- Pfizer, Goodman Fielder, Wilmar, JBS
 - Net Zero by 2040
- Kellogg Company
 - 50% reduction by 2050
- Inghams
 - Reduce Scope 1 & 2 by 43% by 2030 from 2019
 - Scope 3 target by 2030, net zero 2050
- Olam, SunRice
 - Net zero by 2050
- Cargil
 - 30% by 2030, net zero by 2050

DRIVING AMBITIOUS CORPORATE CLIMATE ACTION

In case you think you are buried in reporting requirements?

Snapshot of what your bank and supply chain are facing

Mandatory GHG emission reporting

- Climate-related financial disclosure (CRFD) legislation
 - Australia will have mandatory GHG emission reporting for large companies as of January 2025
 - Includes Scope 3 greenhouse gas (GHG) reporting
- Based on International Financial Reporting Standards (IFRS)
 - Japan 2022; USA is proposing similar
 - The EU's Corporate Sustainability Reporting Directive
 - New Zealand, do mandate inclusion of Scope 3 emissions
- Aligned with GHG Protocol

BOURNE

What are these GHG targets?

Absolute targets

- GHG/business unit
- GHG/State or Country
- What:
 - 30-40% by 2030
 - Net Zero by 2050
- Who: States, Countries
 - Australia 43% by 2030
- Who: Industry strategies
 - Red meat industry (CN30)

Emissions intensity target

- GHG/ LWT
- GHG/ L olive oil
- What:
 - 30% by 2030
 - Net Zero by 2050
- Who: Supply chains & banks
 - Your farm

The day your bank or supply chain set a GHG target

Insetting was born (assumed)!

The worst outcome for your value chain is that you sell carbon credits outside of the 'family'

BUT what does this business model look like?

Insetting versus offsetting

- Offsetting
 - The buying and cancelling (retiring) of carbon credits by an organisation to compensate for the emissions it produces.
- Insetting
 - Activities that reduce or avoid emissions, or store carbon within a value chain, which may comprise a farm and its supply chain, and counting the emissions reductions or carbon storage towards the operation's total emissions
 - Socialising your low GHG footprint along your supply chain

Who wants a share in your GHG number?

- Who wants a slice of your carbon?
 - Your supply chain, Your bank, Your industry
- Who pays?
 - Your carbon is worth \$35 per ACCU
- Possible solution The Supply Shed concept
 - A group of suppliers, in a defined market, providing similar goods and services, within a supply chain
 - Enabling credible (audited, traceable), co-claiming and shared-investment in low GHG product

What is the right GHG number?

- National standard being developed
- International standards already in place

Agriculture Victoria

Greenhouse Gas Emissions: Typical Farm GHG Profiles

piccc

Emission sources within Olive production

Emissions

- 1.2 t CO₂e/ ha
- 0.06 t CO₂e/t crop

Sequestration **

5-8 t CO₂/ha/y between Y5 and Y10

Olive grove CO2-eq emissions and sequestration

https://doi.org/10.1016/j.apenergy.2014.04.019

Issues to consider in the net carbon footprint

• Years before

DICCC

- First harvest (5 years?) & Maximum yield (8 years?)
- Use an average sequestration over the lifetime?
- Age to maximum size (15 years?)
 - No further net sequestration
- Pruning removals
 - Deducted from annual sequestration

Emission Intensity - comparisons

- Chicken meat
 - 3 to 5 kg CO₂e/kg LWT
- Pigs
 - 4 to 7 kg CO₂e/kg LWT
- Wheat
 - 0.1 to 0.5 kg CO₂e/kg grain
- Canola
 - 0.5 to 0.75 kg CO₂e/kg grain
- Dairy
 - 13 to 18 kg CO₂e/kg MS
 - 0.9 to 1.3 kg CO₂e/L

- 11 to 18 kg CO₂e/kg LWT
- Sheep
 - 6 to 8 kg CO₂e/kg LWT
- Wool
 - 21 to 28 kg CO₂e/kg wool
- Wine
 - 0.6 to 4.7 kg CO₂e/L
- Olives
 - <0.06 t CO₂e/tonne (?)
 - 1.5 kg CO₂e/L

Mitigation options

- Nitrogen fertiliser
 - Use inhibitor coated N?
 - Source from low emissions supplier
- Energy
 - Generating or purchasing renewable energy
- Carbon sequestration for olive trees
 - Check that SBTI/value chain accept this

Image: Australian Olives

In Summary

- Olive production could already be carbon neutral
 - If net sequestration in trees is taken into account
 - If sequestration can be averaged over the tree life cycle
- Know what your supply chain target is?
 - Know your GHG number
- Know if they accept tree sequestration
 - And on what basis (running mean vs annual)

piccc.org.au piccc.org.au/education/carbonneutraltraining

Primary Industries Climate Challenges Centre

Copyright The University of Melbourne 2008